Almost universal cupping and diamond embeddings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Cupping Degrees

Cupping nonzero computably enumerable (c.e. for short) degrees to 0′ in various structures has been one of the most important topics in the development of classical computability theory. An incomplete c.e. degree a is cuppable if there is an incomplete c.e. degree b such that a∪b = 0′, and noncuppable if there is no such degree b. Sacks splitting theorem shows the existence of cuppable degrees....

متن کامل

Almost Bi-lipschitz Embeddings and Almost Homogeneous Sets

This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (biLipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but ‘almost homogeneous’. We therefore study the problem of embedding an almost homogeneous subset ...

متن کامل

Isometric Embeddings and Universal Spaces

We show that if a separable Banach space Z contains isometric copies of every strictly convex separable Banach space, then Z actually contains an isometric copy of every separable Banach space. We prove that if Y is any separable Banach space of dimension at least 2, then the collection of separable Banach spaces which contain an isometric copy of Y is analytic non Borel.

متن کامل

On absolutely universal embeddings

It is well known that, given a point-line geometry Γ and a projective embedding ε : Γ → PG(V ), if dim(V ) equals the size of a generating set of Γ, then ε is not derived from any other embedding. Thus, if Γ admits an absolutely universal embedding, then ε is absolutely universal. In this paper, without assuming the existence of any absolutely universal embedding, we give sufficient conditions ...

متن کامل

Bouligand Dimension and Almost Lipschitz Embeddings

In this paper we present some new properties of the metric dimension defined by Bouligand in 1928 and prove the following new projection theorem: Let dimb(A − A) denote the Bouligand dimension of the set A − A of differences between elements of A. Given any compact set A ⊆ R such that dimb(A−A) < m, then almost every orthogonal projection P of A of rank m is injective on A and P |A has Lipschit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2012

ISSN: 0168-0072

DOI: 10.1016/j.apal.2011.11.005